Welcome to SECURE FUTURE INSTITUTE

WELCOME TO SECURE FUTURE INSTITUTE

CERTIFICATE IN DATA SCIENCE ( S-S-14 )

BASIC INFORMATION

  • Course Fees : 45000.00 50000.00/-
  • Course Duration : 06 MONTH
  • Minimum Amount To Pay : Rs.10000.00

Creating a comprehensive data science course involves covering a range of topics that build upon each other to provide a solid foundation in data science. Here's a general outline of what a data science course might include

 

 

1. Introduction to Data Science

   - Overview of Data Science

     - Definition and scope

     - Applications and real-world examples

   - The Data Science Process

     - Problem definition

     - Data collection

     - Data cleaning

     - Data analysis

     - Interpretation and communication

 

2. Python for Data Science

   - Python Basics

     - Data types and structures (lists, dictionaries, sets, tuples)

     - Control flow (loops, conditionals)

   - Libraries and Tools

     - NumPy

     - Pandas

     - Matplotlib and Seaborn

   - Data Manipulation and Cleaning

     - Handling missing data

     - Data transformation

     - Data aggregation

 

3. Statistics and Probability

   - Descriptive Statistics

     - Mean, median, mode

     - Variance and standard deviation

   - Probability Fundamentals

     - Basic probability concepts

     - Distributions (normal, binomial, etc.)

   - Inferential Statistics

     - Hypothesis testing

     - Confidence intervals

     - p-values

 

4. Exploratory Data Analysis (EDA)

   - Data Visualization Techniques

     - Histograms, scatter plots, box plots

     - Advanced plots (heatmaps, pair plots)

   - Pattern Recognition

     - Identifying trends and correlations

   - Feature Engineering

     - Creating new features

     - Feature scaling and normalization

 

5. Machine Learning

   - Supervised Learning

     - Linear regression

     - Classification algorithms (logistic regression, decision trees, SVMs)

     - Model evaluation (accuracy, precision, recall, F1-score)

   - Unsupervised Learning

     - Clustering (K-means, hierarchical)

     - Dimensionality reduction (PCA, t-SNE)

   - Model Selection and Tuning

     - Cross-validation

     - Hyperparameter tuning

 

6. Advanced Topics

   - Deep Learning

     - Neural networks basics

     - Frameworks (TensorFlow, Keras, PyTorch)

   - Natural Language Processing (NLP)

     - Text preprocessing

     - Sentiment analysis

     - Named entity recognition

   - Time Series Analysis

     - Forecasting methods

     - Seasonal decomposition

 

7. Data Engineering

   - Databases and SQL

     - Basic and advanced SQL queries

     - Database design

   - Big Data Technologies

     - Introduction to Hadoop and Spark

   - Data Pipelines

     - ETL (Extract, Transform, Load) processes

 

8. Deployment and Production

   - Model Deployment

     - Deploying models using Flask or Django

     - Cloud services (AWS, Azure, Google Cloud)

   - Monitoring and Maintenance

     - Model performance monitoring

     - Handling model drift

 

9. Ethics and Data Privacy

   - Ethical Considerations

     - Bias and fairness in models

   -Data Privacy

     - Regulations (GDPR, CCPA)

     - Data anonymization and security

 

10. Capstone Project

   - Project Development

     - Define a problem statement

     - Collect and preprocess data

     - Apply data science methods

     - Present findings and insights

 

Additional Resources

   - Recommended Reading

     - Textbooks and papers

   - Online Courses and Tutorials

     - MOOCs and other learning platforms

   - Tools and Software

     - Jupyter notebooks

     - Version control (Git)

Qualification

 

 

 

 

 

 

 

Qualification : 10th / 12th / Graduate .etc